Quantitative results, real-world data

-	$\pi(x)$	 Mean field
	Mad Mix (ours)	 Concrete
	Gibbs	 Dequantization

lower is better

"distance" to p

CPU time

purely discrete synthetic (d=250)

Gaussian mixture model Palmer penguins (d=1,044) and waveform PCA (d=918) data sets

Gaussian mixture model
Palmer penguins (d=1,044) and
waveform PCA (d=918) data sets

Concrete too unstable
Gibbs no access to density
mean-field does poorly

MAD Mix outperforms competitors *and* is cheaper than other flows

setup: $N \approx 500$, $\xi = \pi/16$ for MAD Mix; 5K iterations for Gibbs (+20K burn-in); wide architecture search for continuous-embedding flows (concrete & dequantization)

Quantitative results, real-world data

setup: $N \approx 500$, $\xi = \pi/16$ for MAD Mix; 5K iterations for Gibbs (+20K burn-in); wide architecture search for continuous-embedding flows (concrete & dequantization)

Conclusion

Gian Carlo Diluvi PhD student @ UBC https://giankdiluvi.github.io

MAD Mix: measure-preserving and discrete MixFlows

- inference for discrete posteriors without continuous-embedding
- state-of-the-art performance with orders of magnitude less compute and tuning effort