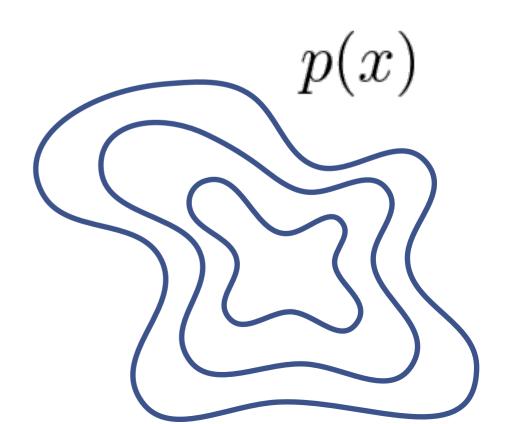
Background: normalizing flows

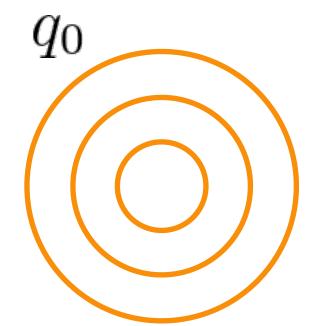
problem: how to approximate p(x)?

(dropping conditioning on data)

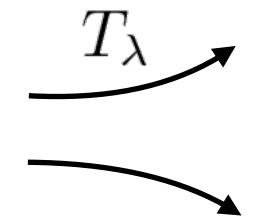


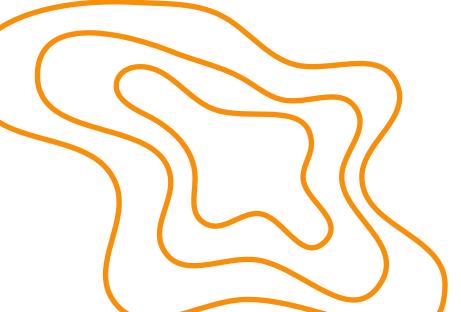
solution: push a simple distribution

 $x_0 \sim q_0$



solution: push a simple distribution through parametrized map





 $\arg\min_{\lambda\in\Lambda}\mathrm{KL}(q_{\lambda}\,||\,p)$ then choose best map:

i.i.d. sampling by evaluating map $X_0 \sim q_0 \qquad X := T_{\lambda}(X_0) \sim q_{\lambda}$

density through change of variables $q_{\lambda}(x) = q_0(T_{\lambda}^{-1}(x))|J_{\lambda}(T^{-1}(x))| |J_{\lambda}(x)| = \nabla T_{\lambda}^{-1}(x)$

problems:

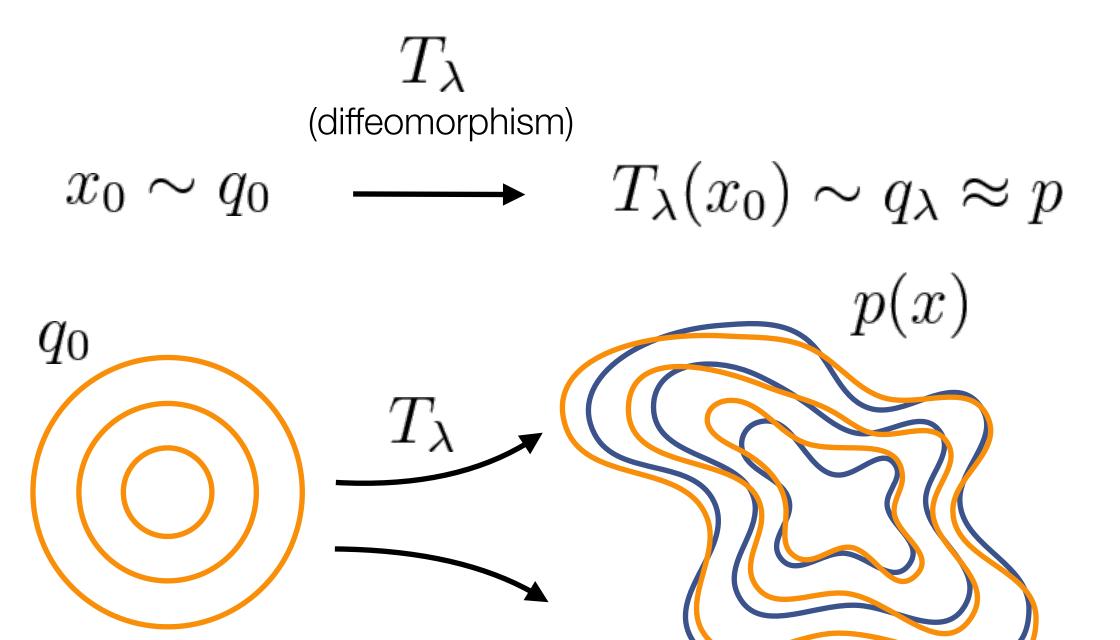
density formula only valid for real-valued $oldsymbol{x}$

need to optimize λ

Background: normalizing flows

problem: how to approximate p(x)?

solution: push a simple distribution through parametrized map



then choose best map: $\arg\min_{\lambda\in\Lambda}\mathrm{KL}(q_{\lambda}\,||\,p)$

i.i.d. sampling by evaluating map

$$X_0 \sim q_0 \qquad X := T_\lambda(X_0) \sim q_\lambda$$

density through change of variables

$$q_{\lambda}(x) = q_0(T_{\lambda}^{-1}(x))|J_{\lambda}(T^{-1}(x))| |J_{\lambda}(x)| = \nabla T_{\lambda}^{-1}(x)$$

problems:

- density formula only valid for real-valued $oldsymbol{x}$
- need to optimize λ

Background: Mixed flows (MixFlows)

problem: have to optimize λ